

Application of Deep Learning for automated Detection of Macular Diseases and Abnormalities of vitreomacular Interface.

Anna A. Ledolter, Alexander Yu. Sizov, Evgenia A. Katalevskaya

Disclosure Statement of Financial Interest

Anna A. Ledolter is an employee of the Digital Vision Solutions LLC and received a part-time salary for this work Alexander Yu. Sizov is an employee of the Digital Vision Solutions LLC and received a part-time salary for this work Evgenia A. Katalevskaya is an employee of the Digital Vision Solutions LLC and received a part-time salary for this work

0

Purpose

Methods

To develop an automated segmentation algorithm for the detection:

- Cystoid macular edema (CME)
- Central serous chorioretinopathy (CSR)

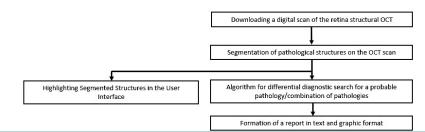
Age- related macular degeneration (AMD)

- Retinal drusen
- Macular Neovasculariasation

Vitreomacular interface abnormalities (VMA)

- Full-Thickness macular hole
- Lamelar macular hole
- Vitreomacular Traction
- Epiretinal membrane

Materials:


Training dataset 14000 OCTs; testing dataset 1000 OCTs

Artificial neural network model:

Feature Pyramid Network (FPN), EfficientNetB0, CenterNet

Following pathological signs were segmented:

intraretinal (IRF)&subretinal (SRF) fluid, retinal pigment epithelial detachment (PED), subretinal hyperreflective material (SHRM), retinal drusen (RD), epiretinal membrane (ERM), vitreomacular traction (VMT), lamelar (LMH)&full-thickness (FTMH) macular hole.

European Society of Ophthalmology 15-17 June 2023, Prague, Czech Republic www.SOE2023.org

0

0.000000000

0,000000000

0.250000000

Results: Estimation of accuracy parameters of the algorithm on the validation database ROC AUC Full thickness macular hole ROC AUC SHRM ROC AUC Vitreomacular traction 1,000000000 1,000000000 1 000000000 0,750000000 0,750000000 0 750000000 Sensitivity=91% Sensitivity=90.8% Sensitivity=95% 0,500000000 pr_vm 0,500000000 0,50000000 Ы Specificity=99% Specificity=99% Specificity=99.9% 0.250000000 0.250000000 Accuracy= 98% Accuracy= 98% 0.25000000 Accuracy= 99.7% AUROC=0.99 AUROC=1.0 AUROC=0.98 0.000000000 0.000000000 0.000000000 0,000000000 0,250000000 0,500000000 0,750000000 0,250000000 0,500000000 0,750000000 0,000000000 0,000000000 0,250000000 0,500000000 0,750000000 fpr_shrm fpr_vmt fpr ROC AUC Intraretinal cvsts ROC AUC Subretinal fluid ROC AUC Retinal drusen 1,000000000 1,000000000 1.000000000 0,750000000 0,750000000 0,750000000 Sensitivity=94% Sensitivity=91% 0,500000000 Sensitivity=92.5% 0.500000000 0,500000000 Specificity=96% Specificity=98% Specificity=98.6% 0.250000000 0,250000000 Accuracy= 97% 0.250000000 Accuracy= 94% Accuracy= 97% AUROC = 1.0AUROC=0.98 AUROC=0.98 0,000000000 0,000000000 0.000000000 0,250000000 0.500000000 0,750000000 0.000000000 0,000000000 0,250000000 0,500000000 0,750000000 0.000000000 0,250000000 0,500000000 0,750000000 fpr_druzen for int cyst fpr_subret_fluid ROC AUC RPE detachment ROC AUC Lamellar macular hole ROC AUC Epiretinal membrane 1,000000000 1,000000000 1,000000000 0.750000000 0.750000000 0,750000000 Sensitivity=94% 0,500000000 Sensitivitv=87.2% 0,500000000 Sensitivity=91% 0,500000000 Specificity=97.4% Specificity=98.7% Specificity=94% 0 250000000 0.250000000 Accuracy= 96.4% Accuracy= 97%

Accuracy= 92.5%

0.000000000

0.000000000

0.250000000

AUROC=0.97

0.750000000

0.500000000

fpr epiret fib

ROC curves and AUCs for each of segmented pathological sign

AUROC=0.99

0,750000000

0.500000000

fpr_rpe_det

0,250000000

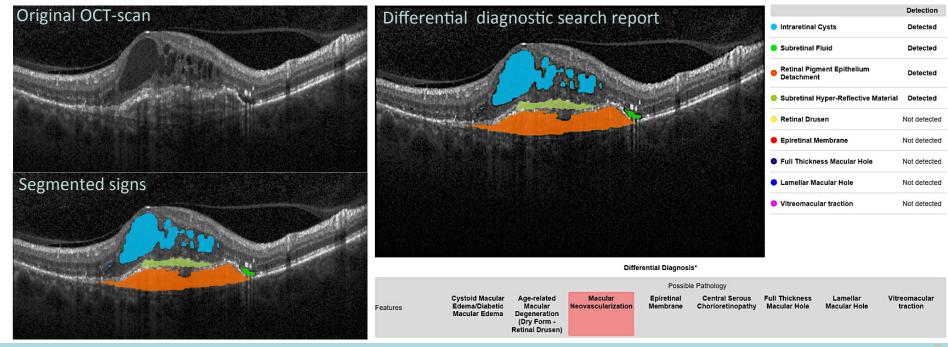
0.000000000

0.000000000

0.250000000

AUROC=0.93

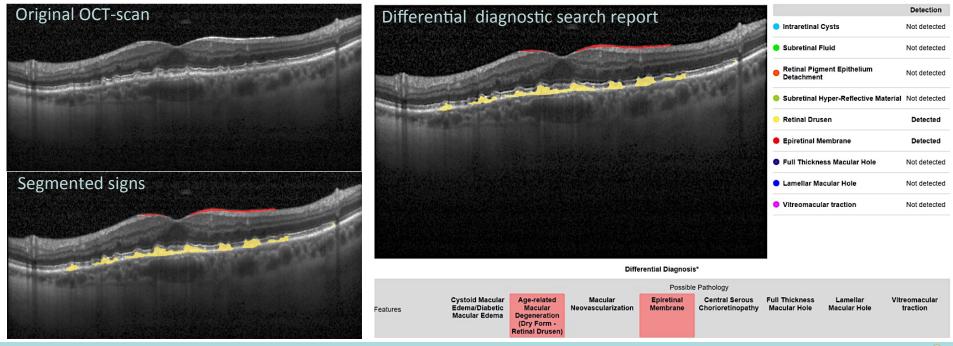
0.750000000


0.500000000

fpr_lamm_hole

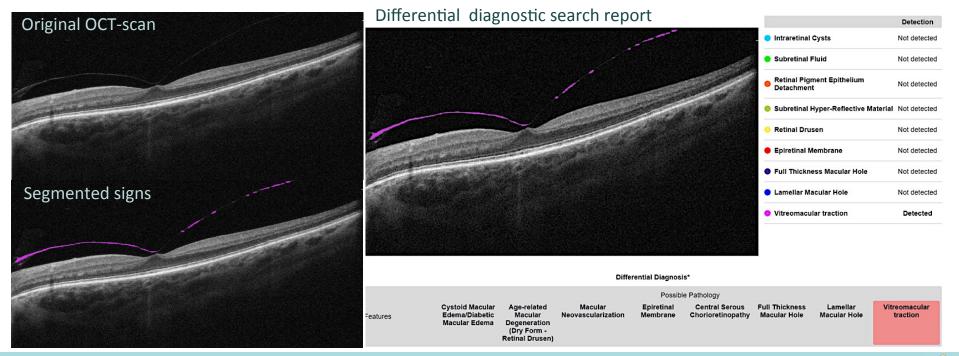
Example of segmentation and reporting by pathology.

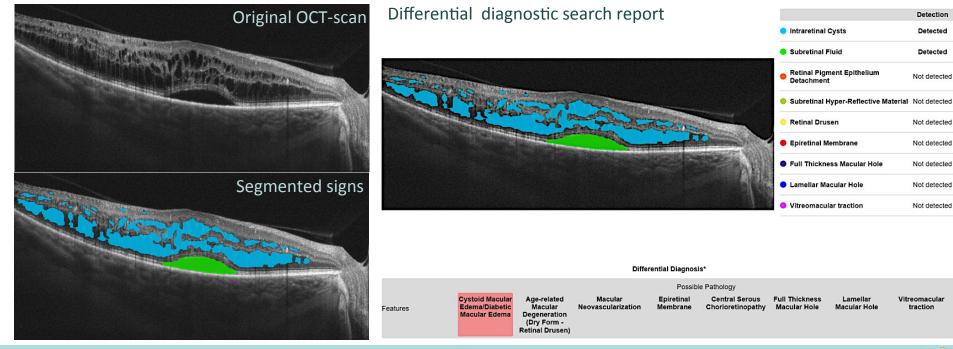
Macular Neovascularisation



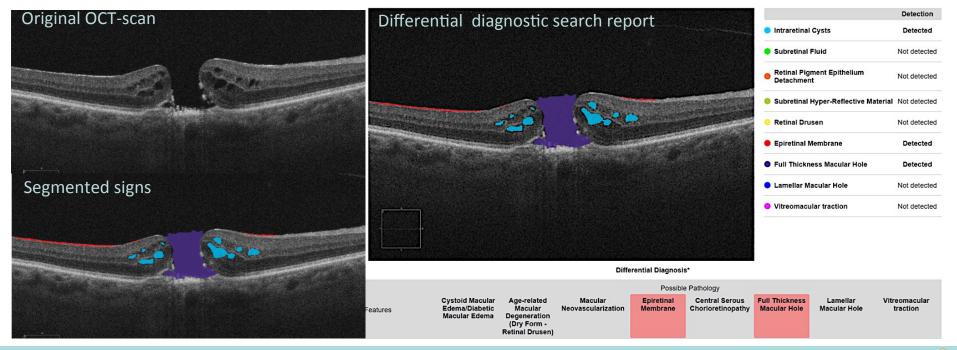
Results:

Example of segmentation and reporting by pathology.


Age-related Macular Degeneration/ Epiretinal Membrane


Vitreomacular Traction

Cystoid Macular Edema/Diabetic Macular Edema



Example of segmentation and reporting by pathology.

Full-Thickness Macular Hole/ Epiretinal Membrane

Conclusion

The highly accurate algorithm of automated segmentation of retinal pathological signs was developed. Based on the designed segmentation algorithm we developed a differential diagnosis algorithm for detection of CME, AMD, VMA and CSR, which is currently approbed in a clinical trial.

European Society of Ophthalmology 15-17 June 2023, Prague, Czech Republic

> screenretina.com Try for free

Diagnosis	Sensitivity (%)	Specificity (%)	Accuracy (%)
Diabetic macular edema/ cystoid macular edema (DME/CME)	96,08	97,48	97,14
Macular Neovascularisation (MNV)	97,50	97,65	97,62
AMD: retinal drusen	97,37	96,51	96,67
Central serous chorioretinopathy (CSR)	92,59	98,36	97,62
Vitreomacular Traction (VMT)	86,96	97,33	96,19
Full-Thickness macular hole (FTMH)	95,65	98,40	98,10
Epiretinal membrane (ERM)	100,00	97,12	98,10
Lamelar macular hole (LMH)	95,83	97,85	97,62
No pathological signs	94,72	97,69	97,25

